Home
Class
ENGLISH
यदिvec(a) = 2 hat(i) + 3 hat(j) + hat(k)...

यदिvec(a) = 2 hat(i) + 3 hat(j) + hat(k) तथाvec (b) = 3 hat(i) + 2 hat(j) - hat(k) हो तो सदिश 3...

Promotional Banner

Similar Questions

Explore conceptually related problems

If vec(a) = hat(i) + hat(j) + 2 hat(k) and vec(b) = 3 hat(i) + 2 hat(j) - hat(k) , find the value of (vec(a) + 3 vec(b)) . ( 2 vec(a) - vec(b)) .

If vec(a) = hat(i) + 2 hat(j) + 3 hat(k) and vec(b) = 2 hat(i) + 3 hat(j) + hat(k) , find a unit vector in the direction of ( 2 vec(a) + vec(b)) .

Find the unit vectors perpendicular to both vec(a) and vec(b) when (i) vec(a) = 3 hat(i)+hat(j)-2 hat(k) and vec(b)= 2 hat(i) + 3 hat(j) - hat(k) (ii) vec(a) = hat(i) - 2 hat(j) + 3 hat(k) and vec(b)= hat(i) +2hat(j) - hat(k) (iii) vec(a) = hat(i) + 3 hat(j) - 2 hat (k) and vec(b)= -hat(i) + 3 hat(k) (iv) vec(a) = 4 hat(i) + 2 hat(j)-hat(k) and vec(b) = hat(i) + 4 hat(j) - hat(k)

Find bar(a). bar(b) xx bar(c) , if bar(a) = 3 hat(i) - hat(j) + 4 hat(k), bar(b) = 2hat(i) + 3 hat(j) - hat(k), bar(c) = - 5 hat(i) + 2 hat(j) + 3 hat(k)

Find the area of the parallelogram whose adjacent sides are represented by the vectors (i) vec(a)=hat(i) + 2 hat(j)+ 3 hat(k) and vec(b)=-3 hat(i)- 2 hat(j) + hat(k) (ii) vec(a)=(3 hat(i)+hat(j) + 4 hat(k)) and vec(b)= ( hat(i)- hat(j) + hat(k)) (iii) vec(a) = 2 hat(i)+ hat(j) +3 hat(k) and vec(b)= hat(i)-hat(j) (iv) vec(b)= 2 hat(i) and vec(b) = 3 hat(j).

Find ( vec (a) xxvec (b)) and |vec(a) xx vec (b)| ,when (i) vec(a) = hat(i)-hat(j)+ 2hat(k) and vec(b)= 2 hat(i)+3 hat(j)-4hat(k) (ii) vec(a)= 2hat (i)+hat(j)+ 3hat(k) and vec(b)= 3hat(i)+5 hat(j) - 2 hat(k) (iii) vec(a)=hat(i)- 7 hat(j)+ 7hat(k) and vec(b) = 3 hat(i)-2hat(j)+2 hat(k) (iv) vec(a)= 4hat(i)+ hat(j)- 2hat(k) and vec(b) = 3 hat(i)+hat(k) (v) vec(a) = 3 hat(i) + 4 hat(j) and vec(b) = hat(i)+hat(j)+hat(k)

Show that the following points whose position vectors are given are collinear : (i) 5 hat(i) + 5 hat(k), 2 hat(i) + hat(j) + 3 hat(k) and - 4 hat(i) + 3 hat(j) - hat(k) (ii) - 2 hat(i) + 3 hat(j) + 5 hat(k), hat(i) + 2 hat(j) + 3 hat(k) and 7 hat(i) - hat(k) .

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

Find the value of lambda for which vec(a) and vec(b) are perpendicular, where (i) vec(a)=2hat(i)+lambda hat(j)+hat(k) and vec(b)=(hat(i)-2hat(j)+3hat(k)) (ii) vec(a)=3hat(i)-hat(j)+4hat(k) and vec(b)=- lamnda hat(i)+3 hat(j)+3 hat(k) (iii) vec(A)=2hat(i)+4hat(j)-hat(k) and vec(b)=3 hat(i)-2 hat(j)+lambda hat(k) (iv) vec(a)=3 hat(i)+2 hat(j)-5 hat(k) and vec(b)=-5 hat(j)+lambda hat(k)

vec(r )=(-4hat(i)+4hat(j) +hat(k)) + lambda (hat(i) +hat(j) -hat(k)) vec(r)=(-3hat(i) -8hat(j) -3hat(k)) + mu (2hat(i) +3hat(j) +3hat(k))