If 1,omega , omega^2 are the cube roots of unity , then Delta=|(1,omega^n , omega^(2n)),(omega^n , omega^(2n), 1),(omega^(2n), 1, omega^n)| is equal to :
If 1,omega , omega^2 are the cube roots of unity , then Delta=|(1,omega^n , omega^(2n)),(omega^n , omega^(2n), 1),(omega^(2n), 1, omega^n)| is equal to :
If 1,omega,omega^2 are the cube roots of unity , then Delta=|(1,omega^n, omega^2n),(omega^n , omega^(2n), 1),(omega^(2n), 1, omega^n)| is equal to :
det [[1, omega, omega^(2) omega, omega^(2), 1omega^(2), 1, omega]] =
If omega is a complex cube root of unity then the value of the determinant |[1,omega,omega+1] , [omega+1,1,omega] , [omega, omega+1, 1]| is