Home
Class
MATHS
A যদি বর্গ ম্যাট্রিক্স হয় যেমন A^2=A, ত...

A যদি বর্গ ম্যাট্রিক্স হয় যেমন `A^2=A`, তাহলে `(I+A)^3-7A` সমান (A) A (B) `IA` (C) `I`...

Promotional Banner

Similar Questions

Explore conceptually related problems

If A is square matrix such that A^(2)=A, then (I+A)^(3)-7A is equal to (A)A(B)I-A(C)I(D)3A

If A is a square matrix such that A^(2)=A, then (I+A)^(3)-7A is equal to (a) A (b) I-A(c)I(d)3A

If a square matrix such that A^(2)=A, then (I+A)^(3)-7A is equal to A(b)I-A(c)I (d) 3A

If A^(2)-A+I=0, then the inverse of A is: (A) A+I (B) A(C)A-I (D) I-A

Assertion (A) : If A is square matrix such that A ^(2) = A, then ( I + A)^(2) - 3 A = I Reason (R) : AI = IA = A

If A is a square matrix such that A^(2)=I, then (A-I)^(3)+(A+I)^(3)-7A is equal to A(b)I-A(c)I+A(d)3A

If A^(2)-A+ I =0 then the inverse of A is - (a) I-A (b) A-I (c) A (d) A+I

"If A" = [{:(1, 2), (1, 3):}] , then find A^(-1) + A . (a) I (b) 2I (c) 3I (d) 4I

what is the value of i^(-35)+i^7 ? (a) 1 (b) 3 (c) 0 (d) 2

In triangle ABC ,, the value of, e^(-i2A), e^(iC), e^(iB) e^(iC), e^(-i2B), e^(iA) e^(iB) , e^(iA), e^(-i2C)] |