Home
Class
PHYSICS - GS
निम्नलिखित वैक्टरों के लिए लंबवत इकाई वे...

निम्नलिखित वैक्टरों के लिए लंबवत इकाई वेक्टर क्या है` 2 Hat(i) + 2 Hat(j) - Hat(k)` और

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the projection of vec(a) = 2 hat(i) - hat(j) + hat(k) on vec(b) = hat(i) - 2 hat(j) + hat(k) .

Show that the following points whose position vectors are given are collinear : (i) 5 hat(i) + 5 hat(k), 2 hat(i) + hat(j) + 3 hat(k) and - 4 hat(i) + 3 hat(j) - hat(k) (ii) - 2 hat(i) + 3 hat(j) + 5 hat(k), hat(i) + 2 hat(j) + 3 hat(k) and 7 hat(i) - hat(k) .

Find the area of the parallelogram whose diagonals are represented by the vectors (i) vec(d)_(1)= 3 hat(i) + hat(j) - 2 hat(k) and vec(d)_(2) = hat(i) - 3 hat(j) +4 hat(k) (ii) vec(d)_(1)= 2 hat(i) - hat(j) + hat(k) and vec(d)_(2)= 3 hat(i) + 4 hat(j)-hat(k) (iii) vec(d)_(1)= hat(i)- 3 hat(j) + 2 hat(k) and vec(d)_(2)= -hat(i)+2 hat(j).

Find the shortest distance between the lines : vec(r) = (4hat(i) - hat(j)) + lambda(hat(i) + 2hat(j) - 3hat(k)) and vec(r) = (hat(i) - hat(j) + 2hat(k)) + mu (2hat(i) + 4hat(j) - 5hat(k))

Find the point of intersection of the line : vec(r) = (hat(i) + 2 hat(j) + 3 hat(k) ) + lambda (2 hat(i) + hat(j) + 2 hat(k)) and the plane vec(r). (2 hat(i) - 6 hat(j) + 3 hat(k) ) + 5 = 0.

What is the value of lamda for which the vectors hat(i) - hat(j) + hat(k), 2hat(i) + hat(j)- hat(k) and lamda hat(i) - hat(j)+ lamda (k) are coplanar

Find the area of the parallelogram whose adjacent sides are represented by the vectors (i) vec(a)=hat(i) + 2 hat(j)+ 3 hat(k) and vec(b)=-3 hat(i)- 2 hat(j) + hat(k) (ii) vec(a)=(3 hat(i)+hat(j) + 4 hat(k)) and vec(b)= ( hat(i)- hat(j) + hat(k)) (iii) vec(a) = 2 hat(i)+ hat(j) +3 hat(k) and vec(b)= hat(i)-hat(j) (iv) vec(b)= 2 hat(i) and vec(b) = 3 hat(j).

Let vec a= hat j- hat k and vec c= hat i- hat j- hat k . Then vector vec b satisfying vec axx vec b+ vec c= vec0 and vec adot vec b=3 is (1) 2 vec i- vec j+2 vec k (2) hat i- hat j-2 hat k (3) hat i+j-2 hat k (4) - hat i+ hat j-2 hat k

Show that the lines vec(r) =(hat(i) +2hat(j) +hat(k)) +lambda (hat(i)-hat(j)+hat(k)) " and " vec(r ) =(hat(i) +hat(j) -hat(k)) + mu (hat(i)- hat(j) + 2hat(k)) Do not intersect .

The unit vector perpendicular to the plane passing through point P( hat i- hat j+2 hat k),\ Q(2 hat i- hat k)a n d\ R(2 hat j+ hat k)i s a) dot""2 hat i+ hat j+ hat k"\" b. sqrt(6)(2 hat i+ hat j+ hat k) c. 1/(sqrt(6))(2 hat i+ hat j+ hat k) d. 1/6(2 hat i+ hat j+ hat k)