Home
Class
GUIDANCE
Prove that in a right triangle, the squa...

Prove that in a right triangle, the square of the hypotenuse is equal to the sum of the squares of the remaining two sides...

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that, in a right-angled triangle, the square of hypotenuse is equal to the sum of the square of remaining two sides.

Prove that in a right triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides. Use the above theorem, in the following. If ABC is an equilateral triangle with AD bot BC , then prove that AD^(2) = 3DC^(2) .

In order to prove, 'In a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of remaining two sides (i) Draw a near labelled figure. (ii) Write 'Given' and 'To Prove' from the figure drawn by you.

STATEMENT In a right triangle the square of the hypotenuse equals the sum of the squares of its remaining two sides.

(Pythagoras's Theorem) Prove by vector method that in a right angled triangle,the square of the hypotenuse is equal to the sum of the squares of the other two sides.

(Pythagorass Theorem) Prove by vector method that in a right angled triangle,the square of the hypotenuse is equal to the sum of the squares of the other two sides.

Prove that is a right angle triangle, the square of the hypotenuse is equal the sum of the squares of other two sides.

Prove that, in a right triangle, the square of the hypotenuse is equal to the sum of squares of the other two sides. Using the above, do the following: Prove that, in a DeltaABC , if AD is perpendicular to BC, dien AB^(2) + CD^(2) = AC^(2) + BD^(2) .

Theorem 6.8 : In a right triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

PYTHAGORAS THEOREM : In a Right angled triangle; the square of hypotenuse is equal to the sum of the squares of the other two sides.

Recommended Questions
  1. Prove that in a right triangle, the square of the hypotenuse is equal ...

    Text Solution

    |

  2. समान लम्बाई के ताँबे के दो तारो के व्यासों का अनुपात 1:2 हैं । उसके ...

    Text Solution

    |

  3. चित्रानुसार एक दण्ड चुम्बक मुक्त रूप से एक कुण्डली के बीच से होकर गिरत...

    Text Solution

    |

  4. समान गतिज ऊर्जा वाले दो आवेशित कण समरूप चुम्बकीय क्षेत्र के लंबवत प्रव...

    Text Solution

    |

  5. किसी स्थान पर पृथ्वी के चुम्बकीय क्षेत्र के क्षैतिज तथा ऊर्ध्वाधर घटक ...

    Text Solution

    |

  6. प्रत्यावर्ती धारा के वर्ग - माध्य - मूल मान से क्या तात्पर्य हैं...

    Text Solution

    |

  7. DeltaABC में, angleA =x^(@) , angleB =3c^(@) और angleC = y^(@). है। यद...

    Text Solution

    |

  8. एक त्रिभुज का सबसे बड़ा कोण शेष दो कोणों के योग का दोगुना है। इसका सबस...

    Text Solution

    |

  9. तीन अका की एक संख्या के अंकों का योग 17 है। मध्य का अंक शेष दो अंकों क...

    Text Solution

    |