Home
Class
MATHS
यदि 2^(10) + 2^(9) * 3^(1)+ 2 ^(8) * 3^(...

यदि 2^(10) + 2^(9) * 3^(1)+ 2 ^(8) * 3^(2) + …. + 2 * 3^(9) + 3^(10) = S - 2^(11) , तो S बराबर है...

Promotional Banner

Similar Questions

Explore conceptually related problems

If 2^(10) + 2^(9) * 3^(1) + 2 ^(8) * 3^(2) + …. + 2 * 3^(9) + 3^(10) = S - 2^(11) , then S is equal to :

2^(10)+2^(9) .3^1+.....2.3^9+3^(10)=A-2^(11) . Find A=

8a ^ (2) -27ab + 9b ^ (2), 3x ^ (3) -x ^ (2) -10x

The following steps are involved in finding the value of 10 (1)/(3) xx 9(2)/(3) by using an appropriate indentity . Arrange them in sequential order . (A) (10)^(2) - ((1)/(3))^(2) = 100 - (1)/(9) (B) 10(1)/(3) xx 9(2)/(3) = (10 + (1)/(3)) (10 - (1)/(3)) (C) (10 + (1)/(3)) (10 - (1)/(3)) = (10)^(2) - ((1)/(3))^(2) [because (a + b) (a -b) = (a^(2) - b^(2))] (D) 100 - (1)/(9) = 99 + 1 - (1)/(9) = 99(8)/(9)

"is"^(10)P_(3)= ""^(9)P_(2)+3""^(9)P_(3) ?.