Home
Class
GUIDANCE
साबित करें कि |axxb^2 =a^2b^2 - (ab)^2...

साबित करें कि `|axxb^2 =a^2b^2 - (ab)^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that |axxb^2 =a^2b^2 - (a.b)^2

(a^2+b^2+2ab)-(a^2+b^2-2ab)

a^3 - b^3 - 3a^2b+ 3ab^2, by, a^2 + b^2 - 2ab

Some Important Identities - (i) (a+b)^(2)=a62+2ab+b^(2)( ii) (a-b)^(2)=a^(2)-2ab+b^(2)

solve: (a^(2) + b^(2) + 2ab) - (a^(2) + b^(2) - 2ab)

If a^3-b^3=899 and a-b=29, then (a-b)^2 +3ab is equal to: यदि a^3-b^3=899 तथा a-b= 29, तो (a-b)^2 +3ab का मान ज्ञात करें |

If a and b are two positive real numbers such that 4a^2 + b^2 = 20 and ab = 4, then the value of 2a+b is : यदि a और b दो सकारात्मक वास्तविक संख्याए है जैसे कि 4a^2 + b^2 = 20 और ab = 4, तो 2a+b का मान:

( a - b) ^(2) + 2ab = ? A. a^(2) - b^(2) B. a^(2) + b^(2) C. a^(2) - 4ab + b^(2) D. a^(2) - 2ab + b^(2)

If a and b are real and i=sqrt(-1) then sin[i ln((a+ib)/(a-ib))] is equal to 1) (2ab)/(a^(2)-b^(2)) 2) (-2ab)/(a^(2)-b^(2)) 3) (2ab)/(a^(2)+b^(2)) 4) (-2ab)/(a^(2)+b^(2))