Home
Class
ECONOMICS
If x = log(a) bc, y = log(b) ca, z = log...

If x = log_(a) bc, y = log_(b) ca, z = log_(c)ab, then the value of (1)/(1 + x) + (1)/(1 + y) + ...

Promotional Banner

Similar Questions

Explore conceptually related problems

IF x = log_(2a)a, y = log_(3a) 2a , z = log_(4a)3a , then the value of xyz + 1 is

If log_(a)bc = x, log_(b)ca = y and log_(c)ab = z , then the value of (1)/(x +1) + (1)/(y +1) + (1)/(z+1) is equal to

l=1+log_(a)bc,m=1+log_(b)ca,n=1+log_(c)a then the value of (1)/(l)+(1)/(m)+(1)/(n)-1

If x = 1 + log_(a) bc, y = 1 + log_(b) ca, z = 1 + log_(c) ab, then xy + yz + zx =

If x=1+log_(a) bc, y=1+log_(b) ca, z=1+log_(c) ab , then (xyz)/(xy+yz+zx) is equal to

If x=log_(a)(bc),y=log_(b)(ca),z=log_(c)(ab) then (1)/(x+1)+(1)/(y+1)+(1)/(z+1) is equal to

If =1+log_(a)bc,y=1+log_(b)ca,z=1+log_(c)ab then prove that xyz=xy+yz+zx