Home
Class
GUIDANCE
lim(x to 0)(sin 2x + a sinx)/x^(3)= fini...

lim_(x to 0)(sin 2x + a sinx)/x^(3)= finite, then a=…………. And limit =………….. | CLASS 12 | LIMITS,...

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x->0)(a sin x-2sin2x)/(tan^(3)x) is finite,then a=

If lim_(x to 0) ("sin" 2X + a "sin" x)/(x^(3)) =b (finite), then (ab)^(2) equals…..

if lim_(x rarr0)(sin2x+a sin x)/(x^(3)) be finite,then the value of a is

If lim_(x rarr o)(sin2x+a sin x)/(x^(3)) be finite,then the value a and the limit are respectively given by

Evaluate: lim_(xto0)(5sin x-7sinx+3 sin3x)/(x^(2)sinx)

If underset( x rarr 0 ) ("Lim") ( sin 2x + a sinx )/( x^(3)) = p ( finite ) , then

Statement-1 : lim_(x to 0) (sqrt(1 - cos 2x))/(x) at (x = 0). Right and limit != hand limit

If (sin x+ae^(x)+be^(-x)+sin(1+x))/(x^(3)) has a finite limit L as xx^(3)rarr0, then

Find the limits: lim_(x rarr 0) (sin x +cos x)^(1/x)

lim_(x=0)(sinh3x+a_(1)sinh2x+a_(2)sinh x)/(x^(5)) have a finite limit find and determine the necessary values of a_(1)&a_(2)