Home
Class 12
MATHS
Prove that int0^oo[n e^(-x)]dx=ln((n^n...

Prove that `int_0^oo[n e^(-x)]dx=ln((n^n)/(n !)),w h e r en` is a natural number greater than 1 and [.] denotes the greatest integer function..

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that int_0^oo[n e^(-x)]dx=1n((n^n)/(n !)),w h e r en is a natural number greater than 1 and [.] denotes the greatest integer function..

Prove that int_(0)^(oo)[ne^(-x)]dx=ln((n^(n))/(n!)), wheren is a natural number greater than 1 and [.] denotes the greatest integer function..

Evaluate int_0^a[x^n]dx, (where,[*] denotes the greatest integer function).

Evaluate int_0^a[x^n]dx, (where,[*] denotes the greatest integer function).

Evaluate: int_0^(2pi)[sinx]dx ,w h e r e[x] denotes the greatest integer function.

lim_(x rarr o+)(log x^(n)-[x])/([x]), n being a natural number and [x] denotes greatest integer function.

Evaluate: int_0^(2pi)[sinx]dx ,w h e r e[dot] denotes the greatest integer function.

Evaluate: int_0^2[x^2-x+1]dx ,w h e r e[dot] denotos the greatest integer function.

Evaluate: int_0^2[x^2-x+1]dx ,w h e r e[dot] denotos the greatest integer function.

Evaluate: int_0^2[x^2-x+1]dx ,w h e r e[dot] denotos the greatest integer function.