Home
Class 11
MATHS
loga (m n p)=loga m+loga n+logap...

`log_a (m n p)=log_a m+log_a n+log_ap`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: log_a x=log_bx xx log_c b xx…xx log_n m xx log_a n

_m^( If );n;a>0;a!=1;log_(a)(mn)=log_(a)m+log_(a)n

m;n;a>0;a!=1;log_(a)((m)/(n))=log_(a)m-log_(a)n

Assuming that log (mn) = log m + logn prove that log x^(n) = n log x, n in N

Assuming that log (mn) = log m + logn prove that log x^(n) = n log x, n in N

If log_(a)x = m and log_(b)x =n then log_(a/b) x= ______

Prove the identity; (log)_(a)N log_(b)N+(log)_(b)N log_(c)N+(log)_(c)N log_(a)N=((log)_(a)N log_(b)N log_(c)N)/((log)_(abc)N)

Prove the identity; (log)_a N* (log)_b N+(log)_b N * (log)_c N+(log)_c N * (log)_a N=((log)_a N*(log)_b N*(log)_c N)/((log)_(a b c)N)

We know that (a^m)^n = a^(mn) Let a^m = x , then m = log_ax x^n = a^(mn) , then log_ax^n= mn = n log_ax (why?)