Home
Class 11
MATHS
Find the value of log10 5 . log10 20 + (...

Find the value of `log_10 5 . log_10 20 + (log_10 2)^2`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of (i) (log_(10)5)(log_(10)20)+(log_(10)2)^(2) (ii) root3(5^((1)/(log_(7)5))+(1)/((-log_(10)0.1))) (iii) log_(0.75)log_(2)sqrtsqrt((1)/(0.125)) (iv)5^(log_(sqrt(5))2)+9^(log_(3)7)-8^(log_(2)5) (v)((1)/(49))^(1+log_(7)2)+5^(-log_(1//5)7) (vi) 7^(log_(3)5)+3^(log_(5)7)-5^(log_(3)7)-7^(log_(5)3)

Without using tables, find the value of 4log_(10)5+5log_(10)2-(1)/(2)log_(10)4 .

If log_(10) 4 = 0.6020 , find the value of : (i) log_(10) 8 (ii) log_(10) 2.5

What is the value of [ log _(10) ( 5 log _(10) 100) ] ^(2) ?

Find the value of log_10 (10.1), given that log_10 e = 0.4343.

The value of 6^(log_10 40)*5^(log_10 36) is

The value of 6^(log_10 40)*5^(log_10 36) is

Given that log_10 2 =x, log_10 3 =y then log_10 1.2=