Home
Class 9
MATHS
If alpha,beta,gamma are the roots of equ...

If `alpha,beta,gamma` are the roots of equation `x^3+ qx + r =0` then find thene find the value of `1/6 (sum alpha^3)^2`.

Text Solution

Verified by Experts

`x^3 + qx + r =0`
roots of the equation are`alpha , beta, gamma`
`alpha + beta + gamma= 0`
`gamma beta + beta alpha + gamma alpha = - q`
`alpha beta gamma = r`
we have to find : `[1/3 sum alpha^3][1/2 sum alpha^3]`
`= 1/6 [ sum alpha^3]^2`
`= 1/6[alpha^3 + beta^3 + gamma ^3]^2`
...
Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha , beta , gamma are the roots of x^3 +px^2 +qx +r=0 then find sum alpha^3

If alpha , beta , gamma are the roots of x^3 +px^2 +qx +r=0 then find sum alpha^3

If alpha , beta , gamma are the roots of x^3 +px^2 +qx +r=0 then find sum alpha^2

If alpha , beta , gamma are the roots of x^3 +px^2 +qx +r=0 then find sum alpha^2

If alpha , beta , gamma are the roots of the equations x^3+px^2+qx+r=0 find the value of sum1/alpha

If alpha , beta , gamma are the roots of the equation px^3 - qx + r = 0 , then the value of alpha + beta + gamma is

If alpha,beta,gamma are the roots of the equation ax^(3)+bx^(2)+cx+d=0 then find the value of sum(alpha^(2)(beta+gamma))

If alpha , beta , gamma are the roots of x^3 +px^2 +qx +r=0 then find sum (1)/( alpha )

If alpha , beta , gamma are the roots of x^3 +px^2 +qx +r=0 then find sum (1)/( alpha )

If alpha , beta , gamma are the roots of the equations x^3+px^2+qx+r=0 find the value of sum1/(alphabeta)