Home
Class 11
MATHS
if (1+k)tan^2x-4tanx-1+k=0 has real root...

if `(1+k)tan^2x-4tanx-1+k=0` has real roots `tanx_1` and `tanx_2` then

Promotional Banner

Similar Questions

Explore conceptually related problems

IF (1+k) tan ^2 x-4 tan x -1 + k=0 has real roots tan x_1 and tanx_2 then

if (1+k)tan^(2)x-4tan x-1+k=0 has real roots tan x_(1) and tan x_(2) then

(1-tanx)/(1+tanx)

If tanx tany=a and x+y=2b show that tanx and tany are the roots of the equation z^2-(1-a)tan2b*z+a=0

If tanx tany=a and x+y=2b show that tanx and tany are the roots of the equation z^2-(1-a)tan2b*z+a=0

If ((1+cos2x))/(sin2x)+3(1+(tanx)tan.(x)/(2))sin x=4 then the value of tanx can be equal to

If ((1+cos2x))/(sin2x)+3(1+(tanx)tan.(x)/(2))sin x=4 then the value of tanx can be equal to

int (tanx)/(1+tan^(2)x)dx=

If |[sec^2x, tanx, tan^2x] , [tan^2x, sec^2x, tanx] , [tanx, tan^2x, sec^2x]| is expanded in the power of tanx then the constant is

Prove that tan2x=(2tanx)/(1-tan^2 x)