Home
Class 12
MATHS
|[b^2c^2,bc,b+c] , [c^2a^2,ca,c+a] , [a^...

`|[b^2c^2,bc,b+c] , [c^2a^2,ca,c+a] , [a^2b^2,ab,a+b]|=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that [[b^2c^2, bc,b+c],[c^2a^2,ca,c+a],[a^2b^2,ab,a+b]] = 0

|[b^(2)c^(2),bc,a-c],[c^(2)a^(2),ca,b-c],[a^(2)b^(2),ab,0]|=?

Evaluate |[0,c,b] , [c,0,a] , [b,a,0]| hence show that |[0,c,b] , [c,0,a] , [b,a,0]|^2= |[b^2+c^2,ab,ac] , [ab,c^2+a^2,bc] , [ca,bc,a^2+b^2]|=4a^2b^2c^2

If a,b,c are non-zero real numbers then D=det[[b^(2)c^(2),bc,b+cc^(2)a^(2),ca,c+aa^(2)b^(2),ab,a+b]]=(A)abc(B)a^(2)b^(2)c^(2)(C)bc+ca+ab(D)0,

Without expending, prove that : (i) |{:(b^(2)c^(2),bc,b+c),(c^(2)a^(2),ca,c+a),(a^(2)b^(2),ab,a+b):}|=0 (ii) |{:(x,y,z),(x^(2),y^(2),z^(2)),(yz,zx,xy):}|=|{:(1,1,1),(x^(2),y^(2),z^(2)),(x^(3),y^(3),z^(3)):}| (iii) |{:(1,2x,x^(2)-yz),(1,y,y^(2)-zx),(1,z,z^(2)-xy):}| ("Taking 2, 3 and "2/3"common from "C_(1),C_(2)" and "C_(3)" repectively") =4xx49 ["from eq.(1)"] =198. (iv) |{:(sinx,cosx,sin(x+alpha)),(siny,cosy,sin(y+alpha)),(sinz,cosz,sin(z+alpha)):}|=0

If a,b, and c are non - zero real numbers, then Delta=|(b^(2)c^(2),bc,b+c),(c^(2)a^(2),ca,c+a),(a^(2)b^(2),ab,a+b)| is equal to a) abc b) a^(2)b^(2)c^(2) c)bc+ca+ab d)None of these

If A=|(b^(2)c^(2),bc,b+c),(c^(2)a^(2),ca,c+a),(a^(2)b^(2),ab,a+b)| then |A|=

Prove that : |{:(b^(2)c^(2),bc, b+c),(c^(2)a^(2),ca, c+a),(a^(2)b^(2),ab, a+b):}|=0

|(b^(2)c^(2),bc,b+c),(c^(2)a^(2),ca,c+a),(a^(2)+b^(2),ab,a+b)|=

If a,b and c are non- zero real number then prove that |{:(b^(2)c^(2),,bc,,b+c),(c^(2)a^(2),,ca,,c+a),(a^(2)b^(2),,ab,,a+b):}| =0