Home
Class 12
MATHS
If veca,vecb,vecc are non-coplanar vecto...

If `veca`,`vecb`,`vecc` are non-coplanar vectors and `lambda` is a real number then [`lambda(veca+vecb)` `lambda^2vecb` `lambdavecc`] = [`veca` `vecb+vecc` `vecb`] for: a. exactly two values of `lambda` b. exactly three values of `lambda` c. no value of `lambda` d. exactly one values of `lambda`

Promotional Banner

Similar Questions

Explore conceptually related problems

If veca, vecb, vecc are non coplanar vectors and lamda is a real number, then [(lamda(veca+vecb), lamda^(2)vecb, lamdavecc)]=[(veca, vecb+vecc,vecb)] for

If veca, vecb, vecc are non coplanar vectors and lamda is a real number, then [(lamda(veca+vecb), lamda^(2)vecb, lamdavecc)]=[(veca, vecb+vecc,vecb)] for

If veca, vecb, vecc are non coplanar vectors and lamda is a real number, then [(lamda(veca+vecb), lamda^(2)vecb, lamdavecc)]=[(veca, vecb+vecc,vecb)] for

If veca, vecb, vecc are three non-coplanar vectors, then [veca+ vecb + vecc veca - vecc veca-vecb] is equal to :

If veca, vecb and vecc are three non-coplanar vectors, then (veca + vecb + vecc). [(veca + vecb) xx (veca + vecc)] equals

veca and vecc are unit collinear vectors and |vecb|=6 , then vecb-3vecc = lambda veca , if lambda is:

veca and vecc are unit collinear vectors and |vecb|=6 , then vecb-3vecc = lambda veca , if lambda is:

Prove that [lambda veca +mu vecb" "vecc" "vecd]=lambda [veca" "vecc" "vecd]+mu[vecb" "vecc" "vecd] .

If veca, vecb, vecc are any three non coplanar vectors, then (veca+vecb+vecc).(vecb+vecc)xx(vecc+veca)