Home
Class 12
MATHS
If x=1+(log)a b c ,\ y=1+(log)b c a\ a n...

If `x=1+(log)_a b c ,\ y=1+(log)_b c a\ a n d\ z=1+(log)_c a b ,\ ` then prove that `x y z=x y+y z+z xdot`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=1+(log)_a b c , y=1+(log)_b c a and z=1+(log)_c a b , then prove that x y z=x y+y z+z x

if x =log_a (bc), y= log_b (ca) and z=log_c(ab) then 1/(x+1)+1/(y+1)+1/(z+1)

If ("log"x)/(y - z) = ("log" y)/(z - x) = ("log" z)/(x - y) , then prove that xyz = 1.

If x=(log)_(2a)a , y=(log)_(3a)2a ,z=(log)_(4a)3a ,prove that 1+x y z=2y z

If (log x)/(b-c) = (log y)/(c-a) = (log z)/(a-b) , then prove that x^(b+c).y^(c+a).z^(a+b) = 1

If a^x=b ,\ b^y=c\ a n d\ c^z=a , prove that x y z=1

If y=a^(1/(1-(log)_a x)) and z=a^(1/(1-(log)_a y)) ,then prove that x=a^(1/(1-(log)_a z))

If y=a^(1/(1-(log)_a x)) and z=a^(1/(1-(log)_a y)),then prove that x=a^(1/(1-(log)_a z))

If y=a^(1/(1-(log)_a x)) and z=a^(1/(1-(log)_a y)) ,then prove that x=a^(1/(1-(log)_a z))