Home
Class 11
MATHS
Using the principle of mathematical indu...

Using the principle of mathematical induction, prove that `:` `1. 2. 3+2. 3. 4++n(n+1)(n+2)=(n(n+1)(n+2)(n+3))/4^` for all `n in N` .

Promotional Banner

Similar Questions

Explore conceptually related problems

Using the principle of mathematical induction,prove that :.2.3+2.3.4+...+n(n+1)(n+2)=(n(n+1)(n+2)(n+3))/(4) for all n in N

Using the principle of mathematical induction prove that : 1. 3+2. 3^2+3. 3^3++n .3^n=((2n-1)3^(n+1)+3)/4^ for all n in N .

Using the principle of mathematical induction, prove that 1.3 + 2.3^(2) + 3.3^(2) + ... + n.3^(n) = ((2n-1)(3)^(n+1)+3)/(4) for all n in N .

Using the principle of mathematical induction, prove that 1.3 + 2.3^(2) + 3.3^(2) + ... + n.3^(n) = ((2n-1)(3)^(n+1)+3)/(4) for all n in N .

By the principle of mathematical induction prove that 1+2+3+4+…n= (n(n+1))/2

Prove the following by using the principle of mathematical induction for all n in N : 1. 2. 3 + 2. 3. 4 + .. . + n(n + 1) (n + 2)=(n(n+1)(n+2)(n+3))/4

Using the principle of mathematical induction prove that : the 1.3+2.3^(2)+3.3^(3)++n.3^(n)=((2n-1)3^(n+1)+3)/(4) for all n in N.

Prove the following by using the principle of mathematical induction for all n in N :- 1.2.3 + 2.3.4 +...+n(n+1)(n+2)=(n(n+1)(n+2)(n+3))/4 .

Using the principle of mathematical induction prove that 1/(1. 2. 3)+1/(2. 3. 4)+1/(3. 4. 5)++1/(n(n+1)(n+2))=(n(n+3))/(4(n+1)(n+2) for all n in N

Using the principle of mathematical induction prove that 1/(1. 2. 3)+1/(2. 3. 4)+1/(3. 4. 5)++1/(n(n+1)(n+2))=(n(n+3))/(4(n+1)(n+2) for all n in N