Home
Class 11
MATHS
lim(x->-2)((x^5+2x^4+x^2+3x+2)/(x^4+2x^3...

`lim_(x->-2)((x^5+2x^4+x^2+3x+2)/(x^4+2x^3+3x^2-5x-22))=`

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that Lt_(xto-2)((x^(5)+2x^(4)+x^(2)+3x+2)/(x^(4)+2x^(3)+3x^(2)-5x-22))=-3/5

lim_(x->1)(x^4-3x^2+2)/(x^3-5x^2+3x+1)

find lim_(x->1) ((x^4-3x^2+2)/(x^3-5x^2+3x+1))

Evaluate the following lim_(xto0) (3x^2 +4x -1) (x^4+2x^3-3x^2 +5x+2)

(lim)_(x->3)(x^4-81)/(2x^2-5x-3)

Evaluate lim_(x to 2) (x^(3) - 3x^(2) + 4)/(x^(4) - 8x^(2) + 16)

Evaluate lim_(x to 2) (x^(3) - 3x^(2) + 4)/(x^(4) - 8x^(2) + 16)

lim_(x to 2) (x^(3) + x^(2) + 4x + 12)/(x^(3) - 3x + 2) is equal to

lim_(x to 2) (x^(3) + x^(2) + 4x + 12)/(x^(3) - 3x + 2) is equal to

lim_(x rarr-2)(x^(4)+2x^(3)+3x^(2)+5x-2)/(x^(5)+3x^(4)+2x^(3)+3x^(2)+7x+2)