Home
Class 12
MATHS
If int0^1(sint)/(1+t)dx=alpha, then the ...

If `int_0^1(sint)/(1+t)dx=alpha,` then the value of the integral `int_(4pi-2)^(4pi)(sint/2)/(4pi+2-t)dti s` `2alpha` (2) `-2alpha` (3) `alpha` (d) `-alpha`

Promotional Banner

Similar Questions

Explore conceptually related problems

If int_0^1(sint)/(1+t)dt=alpha, then the value of the integral int_(4pi-2)^(4pi)(sin(t/2))/(4pi+2-t)dt is (1) 2alpha (2) -2alpha (3) alpha (4) -alpha

If int_0^1(sint)/(1+t)dt=alpha, then the value of the integral int_(4pi-2)^(4pi)(sin(t/2))/(4pi+2-t)dt is (1) 2alpha (2) -2alpha (3) alpha (4) -alpha

If int_(0)^(1)(sin t)/(1+t)dx=alpha, then the value of the integral int_(4 pi-2)^(4 pi)(sin(t)/(2))/(4 pi+2-t)dt is 2 alpha(2)-2 alpha(3)alpha(d)-alpha

If int_(0)^(1)(sint)/(1+t)dt=alpha , then find the value of int_(4pi-2)^(4pi)("sin"t/2)/(4pi|2-t|)dt

If int_(0)^(1)(sint)/(1+t)dt=alpha , them the value of the integral int_(4pi-2)^(4pi)("sin"(t)/(2))/(4pi+2-t)dt in terms of alpha is given by

If (1 sin t)/(1 + t) dt = alpha , then that value of the integral : int_(4pi - 2)^(4pi) (sin t/2)/(4pi + 2 - t) dt in terms of alpha is given by :

If overset(1)underset(0)int(sint)/(1+t)dt=alpha , then the value of the integral overset(4pi)underset(4pi-2)int("sin"(t)/(2))/(4pi+2-t)dt in terms of alpha is given by

If int_0^1tan^(-1)xdx=alpha,t h e nint_0^(pi/4)tan^(-1)((2cos^2theta)/(2-sin2theta))sec^2thetadtheta is equal to: alpha (b) alpha/2 (c) 3alpha (d) 2alpha

The value of int_(0)^((pi)/(2))sin|2x-alpha|dx, where alpha in[0,pi], is (a) 1-cos alpha(b)1+cos alpha(c)1 (d) cos alpha