Home
Class 12
MATHS
zo is one of the roots of the equation z...

zo is one of the roots of the equation `z^n cos theta0+ z^(n-1) cos theta2 +. . . . . . + z cos theta(n-1) + cos theta(n)` = 2, where `theta in R` , then (A) |z0| <`1/2` (B) |z0| > `1/2` (C) |z0| = `1/2`

Promotional Banner

Similar Questions

Explore conceptually related problems

zo is one of the roots of the equation z^n cos theta_0+ z^(n-1) cos theta_2 +. . . . . . + z cos theta_(n-1) + cos theta_(n) = 2 , where theta in R , then (A) |z_0| lt 1/2 (B) |z_0| gt 1/2 (C) |z_0| = 1/2 (D)None of these

zo is one of the roots of the equation z^n cos theta_0+ z^(n-1) cos theta_1 +. . . . . . + z cos theta_(n-1) + cos theta_(n) = 2 , where theta in R , then (A) |z_0| lt 1/2 (B) |z_0| gt 1/2 (C) |z_0| = 1/2 (D)None of these

z0is a root of the equation z^(n)cos[theta o]+z^(n-1)cos[theta1]+z^(n-2)cos theta[theta2]+......+z^(n)cos[theta[n-1]]+cos theta[n]=2 where Theta[i]in R

If y=cos^(2) theta + sec^(2) theta , theta != n pi, n in Z then

The distance of the roots of the equation tan theta_(0) z^(n) + tan theta_(1) z^(n-1) + …+ tan theta_(n) = 3 from z=0 , where theta_(0) , theta_(1) , theta_(2),…, theta_(n) in [0, (pi)/(4)] satisfy

Solution of the equation sin (sqrt(1+sin 2 theta))= sin theta + cos theta is (n in Z)

Solution of the equation sin (sqrt(1+sin 2 theta))= sin theta + cos theta is (n in Z)

Solution of the equation sin (sqrt(1+sin 2 theta))= sin theta + cos theta is (n in Z)

All the roots of equation z^n costgheta_0 +z^(n-1) costheta_1 +z^(n-2) costheta_2+…+costheta_n=2, when theta_0, theta_1, theta_2, ……theta_n epsilon R lie (A) on the line Re[(3+4i)z]=0 (B) inside the circel |z|=1/2 (C) outside the circle |z|= 1/2 (D) on the circle |z|= 1/2