Home
Class 12
MATHS
Find the value of cot^(-1) [(sqrt(1-sinx...

Find the value of `cot^(-1) [(sqrt(1-sinx)+sqrt(1+sinx))/(sqrt(1-sinx)-sqrt(1+sinx))]`

Promotional Banner

Similar Questions

Explore conceptually related problems

Tan^(-1)[(sqrt(1+sinx)-sqrt(1-sinx))/(sqrt(1+sinx)+sqrt(1-sinx))]=

Prove that cot^(-1)[(sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx))]

The value of cot^(-1){(sqrt(1-sinx)+sqrt(1+sinx))/(sqrt(1-sinx)-sqrt(1+sinx))} , where (pi)/2ltxltpi , is

The value of cot^(-1){(sqrt(1-sinx)+sqrt(1+sinx))/(sqrt(1-sinx)-sqrt(1+sinx))} , where (pi)/2ltxltpi , is

The value of cot^(-1){(sqrt(1-sinx)+sqrt(1+sinx))/(sqrt(1-sinx)-sqrt(1+sinx))} , where (pi)/2ltxltpi , is

The value of cot^(-1){(sqrt(1-sinx)+sqrt(1+sinx))/(sqrt(1-sinx) -sqrt(1+sinx))} is (0 lt x lt (pi)/(2))

The value of cot^(-1){(sqrt(1-sinx)+sqrt(1+sinx))/(sqrt(1-sinx) -sqrt(1+sinx))} is (0 lt x lt (pi)/(2))

The value of tan^(-1)[(sqrt(1-sinx)+sqrt(1+sinx))/(sqrt(1-sinx)-sqrt(1+sinx))](AA x in [0, (pi)/(2)]) is equal to