Home
Class 11
MATHS
A Function f(x) satisfies the relation ...

A Function `f(x)` satisfies the relation `f(x)=e^x+int_0^1e^xf(t)dtdot` Then (a)`f(0)<0` (b)`f(x)` is a decreasing function. (c)`f(x)` is an increasing function. (d)`int_0^1f(x)dx >0`

Promotional Banner

Similar Questions

Explore conceptually related problems

A Function f(x) satisfies the relation f(x)=e^(x)+int_(0)^(1)e^(x)f(t)dt* Then (a)f(0) 0

A continuous function f(x) satisfies the relation f(x)=e^x+int_0^1 e^xf(t)dt then f(1)=

A continuous function f(x) satisfies the relation f(x)=e^x+int_0^1 e^xf(t)dt then f(1)=

A continuous function f(x) satisfies the relation f(x)=e^(x)+int_(0)^(1)e^(x)f(t)dt then f(1)=

A function f(x) which satisfies the relation f (x) =e^(x)+ int_(0)^(1) (e^(x)+te^(-x))f (t) dt, find f(x) .

Find f(x) if it satisfies the relation f(x)=e^(x)+int_(0)^(1)(x+ye^(x))f(y)dy

A derivable function f(x) satisfies the relation f(x)=int_(0)^(1)xf(t)dt+int_(0)^(x)x^(2)f(t)dt. The value of (2f'(1))/(f(1)) is

Find f(x) if it satisfies the relation f(x) = e^(x) + int_(0)^(1) (x+ye^(x))f(y) dy .

A function f(x) satisfies f(x)=sinx+int_0^xf^(prime)(t)(2sint-sin^2t)dt is

A function f(x) satisfies f(x)=sinx+int_0^xf^(prime)(t)(2sint-sin^2t)dt is