Home
Class 12
MATHS
If y=sqrt(x)+(1)/sqrt(x), then show that...

If `y=sqrt(x)+(1)/sqrt(x)`, then show that `2x(dy)/(dx)+y=2sqrt(x)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If y = sqrt(x) + (1)/(sqrt(x)) prove that 2x(dy)/(dx) + y = 2sqrt(x)

if y=sqrt(x^(2)+a^(2)), then show that y(dy)/(dx)=x

If y=sqrt(x)+(1)/(x), Show that 2x(dy)/(dx)+y=2sqrt(x)

If y=sqrt(x)+(1)/(sqrt(x)), prove that 2x(dy)/(dx)=sqrt(x)-(1)/(sqrt(x))

If sqrt(y+x) + sqrt(y-x) = a , then show that dy/dx = 2x/a^2

If y=log{sqrt(x-1)-sqrt(x+1)}, show that (dy)/(dx)=(-1)/(2sqrt(x^(2)-1))

If y=log{sqrt(x-1)-sqrt(x+1)}, show that (dy)/(dx)=(-1)/(2sqrt(x^2-1))

If y=log{sqrt(x-1)-sqrt(x+1)}, show that (dy)/(dx)=(-1)/(2sqrt(x^(2)-1))

If y= sqrt ( x) + (1)/( sqrtx ) , prove that 2x (dy)/( dx ) + y=2 sqrt (x ) .

If y=sqrt(x)+(1)/(sqrt(x))," then: "2x(dy)/(dx)+y=