Home
Class 10
MATHS
Prove that : (tantheta)/(1-cottheta)+...

Prove that : `(tantheta)/(1-cottheta)+(cottheta)/(1-tantheta)=1+sectheta" cosec "theta`

Promotional Banner

Similar Questions

Explore conceptually related problems

tantheta /(1-cottheta ) + cottheta/(1-tan theta)= 1+sectheta*cosectheta

Prove that: (tantheta)/(1-cottheta)+(cottheta)/(1-tantheta)=1+secthetacos e ctheta

Prove that: (tantheta)/(1-cottheta)+(cottheta)/(1-tantheta)=1+tantheta+cottheta

Prove that tantheta/(1-cottheta)+cottheta/(1-tantheta)=1+secthetacosectheta

i) Prove that: (1+tan^(2)A)/(1-tan^(2)A) xx (2 cos^(2) A-1)=1 ii) Prove that: (tantheta)/(1+cottheta)+(cottheta)/(1+tantheta) = "cosec"theta.sectheta-1

i) Prove that: (1+tan^(2)A)/(1-tan^(2)A) xx (2 cos^(2) A-1)=1 ii) Prove that: (tantheta)/(1+cottheta)+(cottheta)/(1+tantheta) = "cosec"theta.sectheta-1

(tantheta)/(1-cottheta)+(cottheta)/(1-tantheta) is equal to -

Prove: (tantheta)/(1- cottheta)+(cottheta)/(1-tantheta)=1+tantheta+cottheta

tantheta/(1-cottheta)+cottheta/(1-tantheta)=1+tantheta+cottheta .