Home
Class 12
MATHS
The value of (tan(A/2))/((a-b)(a-c))+(ta...

The value of `(tan(A/2))/((a-b)(a-c))+(tan(B/2))/((b-c)(b-a))+(tan(C/2))/((c-a)(c-b))` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

In a triangle Delta ABC , prove the following : (tan A//2)/((a-b)(a-c))+(tan B//2)/((b-c)(b-a))+(tan C//2)/((c-a)(c-b)) = (1)/(Delta)

In a triangle Delta ABC , prove the following : (tan A//2)/((a-b)(a-c))+(tan B//2)/((b-c)(b-a))+(tan C//2)/((c-a)(c-b)) = (1)/(Delta)

If A+B+C=pi , then tan((A)/(2))tan((B)/(2))+tan((B)/(2))tan((C)/(2))+tan((C)/(2))tan((A)/(2)) is equal to a) (pi)/(6) b)3 c)2 d)1

(tan(B/2)-tan(C/2))/(tan(B/2)+tan(C/2))

(viii) (b+c-a) tan( A/2) = (c+a-b) tan( B/2) = (a+b-c) tan C/2

(b-c)/(a) = (tan B/2-tan( c/2))/(tan B/2+tan C/2)

Prove that, tan((A)/(2)+B)=(c+b)/(c-b)tan((A)/(2))

1-tan(A)/(2)tan(B)/(2)=(2c)/(a+b+c)

In Delta ABC if tan((A)/(2))tan((B)/(2))+tan((B)/(2))tan((C)/(2))=(2)/(3) then a+c