Home
Class 11
PHYSICS
ABCD is a parallelogram Fig. 2 (c ) .64....

`ABCD` is a parallelogram Fig. 2 (c ) .64. AC` and (BD) are its diagonals. Show that
` (a) vec (AC) +vec (BD) =2 vec (BC)`
(b) `vec (AC) - vec (BD) =2 vec (AB)`
.

Promotional Banner

Similar Questions

Explore conceptually related problems

ABCD is a parallelogram and AC, BD are its diagonals. Show that : vec(AC)+vec(BD)=2vec(BC), vec(AC)-vec(BD)=2vec(AB) .

ABCD is a parallelogram and AC, BD are its diagonals. Show that : vec(AC)+vec(BD)=2vec(BC),vec(AC)-vec(BD)=2vec(AB) .

vec(AC) and vec(BD) are the diagonals of a parallelogram ABCD. Prove that (i) vec(AC) + vec(BD) - 2 vec(BC) (ii) vec(AC) - vec(BD) - 2vec(AB)

bar(AC) " and " bar(BD) are the diagonals of the parallelogram ABCD. Prove that, vec(AC)+vec(BD)=2vec(BC) " and " vec(AC)-vec(BD)=2vec(AB)

ABCD is a parallelogram with AC and BD as diagonals. Then, A vec C - B vec D =

A parallelogram ABCD. Prove that vec(AC)+ vec (BD) = 2 vec(BC) '

In a parallelogram ABCD. Prove that vec(AC)+ vec (BD) = 2 vec(BC)

ABCD is a parallelogram, with AC, BD as diagonals. Then vec AC - vec BD =

If ABCD is a parallelogram, then vec(AC) - vec(BD) =

If ABCD is a parallelogram, then vec(AC) - vec(BD) =