Home
Class 11
MATHS
If z1, z2, z3 are three complex, number...

If `z_1, z_2, z_3` are three complex, numbers and `A=[[a r g z_1,a r g z_3,a r g z_3],[a r g z_2,a r g z_2,a r g z_1],[a r g z_3,a r g z_1,a r g z_2]]` Then `A` divisible by `a r g(z_1+z_2+z_3)` b. `a r g(z_1, z_2, z_3)` c. all numbers d. cannot say

Promotional Banner

Similar Questions

Explore conceptually related problems

If z_1a n dz_2 are two complex numbers such that |z_1|=|z_2|a n d arg(z_1)+a r g(z_2)=pi , then show that z_1,=-( barz )_2dot

If z_1a n dz_2 are two nonzero complex numbers such that |z_1+z_2|=|z_1|+|z_2|, then a rgz_1-a r g z_2 is equal to

If z_1a n dz_2 are two complex numbers such that |z_1|=|z_2|a n d arg(z_1)+a r g(z_2)=pi , then show that z_1,=- bar z _2dot

If z_1a n dz_2 are two complex numbers such that |z_1|=|z_2|a n d arg(z_1)+a r g(z_2)=pi , then show that z_1,=- bar z _2dot

If z_1a n dz_2 are two complex numbers such that |z_1|=|z_2|a n d arg(z_1)+a r g(z_2)=pi , then show that z_1,=-( z )_2dot

If z_1, z_2a n dz_3, z_4 are two pairs of conjugate complex numbers, then find the value of "a r g"(z_1//z_4)+a r g(z_2//z_3)dot

Let z_1a n dz_2 be two complex numbers such that ( z )_1+i( z )_2=0 and arg(z_1z_2)=pidot Then, find a r g(z_1)dot

If z_1a n dz_2 are conjugate to each other then find a r g(-z_1z_2)dot

If z_1a n dz_2 are two nonzero complex numbers such that = |z_1+z_2|=|z_1|+|z_2|, then a rgz_1-a r g z_2 is equal to -pi b. pi/2 c. 0 d. pi/2 e. pi

If z_1a n dz_2 are two nonzero complex numbers such that = |z_1+z_2|=|z_1|+|z_2|, then a rgz_1-a r g z_2 is equal to -pi b. pi/2 c. 0 d. pi/2 e. pi