Home
Class 11
MATHS
Let f(x)={1+(2x)/a ,0lt=x<1 and ax ,...

Let `f(x)={1+(2x)/a ,0lt=x<1 and ax ,1lt=x<2` If `lim_(x->1)f(x)` exists ,then ` a` is (a)` 1` (b) `-1` (c) `2` (d) `-2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)={1+(2x)/a ,0lt=x 1)f(x) exists ,then a is (a) 1 (b) -1 (c) 2 (d) -2

f(x)={{:(2px+3,if x lt 1),(1-px^(2), if x gt 1):} and let Lt_(x to 1)f(x) exists, then p=

Let f(x)={{:(,sin2x,0 lt x le xpi//6),(,ax+b,pi//6 lt x lt 1):} If f(x) and f'(x) are continuous, then

Discuss the continuity of f(x)={x{x}+1,0lt=x<1 and 2-{x},1lt=x<2 where {x} denotes the fractional part function.

Let f(x)={{:(,x^(3),x lt 1),(,ax^(2)+bx+c,:x ge 1):} . If f''(1) exists, then the value of (a^(2)+b^(2)+c^(2)) is

Let f(x)={{:(,x^(3),x lt 1),(,ax^(2)+bx+c,:x ge 1):} . If f''(1) exists, then the value of (a^(2)+b^(2)+c^(2)) is

Let f(x)= {:{ (x + a , x ge 1 ) , ( ax^(2) + 1, x lt 1) :} then f(x) is derivable at x =1 , if

Let f(x)= {:{ (x + a , x ge 1 ) , ( ax^(2) + 1, x lt 1) :} then f(x) is derivable at x =1 , if

Let f(x)= {:{((x+a) , x lt1),( ax^(2)+1, xge1):} then f(x) is continuous at x =1 for