Home
Class 12
MATHS
Find the inverse of f(x)=2^(log10 x)+...

Find the inverse of ` f(x)=2^(log_10 x)+8` and hence solve the equation `f(x)= f^(-1) (x)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the inverse function of f(x)=log_(2)x

Let f:[(1)/(2),oo)rarr[(3)/(4),oo), where f(x)=x^(2)-x+1. Find the inverse of f(x) Hence or otherwise solve the equation,x^(2)-x+1=(1)/(2)+sqrt(x-(3)/(4))

If f(x)=10x^2 - 13x+13 solve the equation f(x) = 16.

Let f :[1/2,oo)rarr[3/4,oo), where f(x)=x^2-x+1. Find the inverse of f(x). Hence or otherwise solve the equation, x^2-x+1=1/2+sqrt(x-3/4.

Let f:[1//2, infty)rarr[3//4, infty) where f(x)= x^2-x+1 . Find the inverse of f(x). Hence or otherwise solve the equation, x^2-x+1=1/2+sqrt(x-3//4)

Let f :[1/2,oo)rarr[3/4,oo), where f(x)=x^2-x+1. Find the inverse of f(x). Hence or otherwise solve the equation, x^2-x+1=1/2+sqrt(x-3/4.

Let F:[3,infty]to[1,infty] be defined by f(x)=pi^(x(x-3) , if f^(-1)(x) is inverse of f(x) then the number of solution of the equation f(x)=f^(-1)(x) are

Let F:[3,infty]to[1,infty] be defined by f(x)=pi^(x(x-3) , if f^(-1)(x) is inverse of f(x) then the number of solution of the equation f(x)=f^(-1)(x) are

If f(x)=x^(2)-6x+7, solve the equation: f(x) = f(2x+1.)

f(x) = log((1+x)/(1-x)) satisfies the equation: f(x_(1)) +f(x_(2))