Home
Class 11
MATHS
If 2x+y+lambda=0 is a normal to the para...

If `2x+y+lambda=0` is a normal to the parabola `y^2=-8x ,` then `lambda` is 12 (b) `-12` (c) 24 (d) `-24`

Promotional Banner

Similar Questions

Explore conceptually related problems

If 2x+y+lambda=0 is a normal to the parabola y^2=-8x , then lambda is (a)12 (b) -12 (c) 24 (d) -24

If 2x+y+lambda=0 is a normal to the parabola y^2=-8x , then lambda is (a)12 (b) -12 (c) 24 (d) -24

If 2x+y+lambda=0 is a normal to the parabola y^2=-8x , then lambda is (a) 12 (b) -12 (c) 24 (d) -24

If 2 x+y+lambda=0 is a normal to the parabola y^(2)=8 x, then lambda=

The line y= xsqrt(2)+lambda is a normal to the parabola y^(2)=4x then lambda =

For the parabola y^(2)+8x-12y+20=0

If x+y+1=0 touches the parabola y^(2)=lambda x then lambda=

If the line 2x-2y+lambda=0 is a secant to the parabola x^(2)=-8y, then lambda lies in the interval (4,oo)(b)(-oo,4)(c)(0,4)(d)Noneofthese