Home
Class 12
MATHS
lim(x->3)((x^3+27)ln(x-2))/((x^2-9) is ...

`lim_(x->3)((x^3+27)ln(x-2))/((x^2-9)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr3)((x^(3)+27)ln(x-2))/((x^(2)-9)) is equal to

The value of lim_(x->3)((x^3+27)(log)_e(x-2))/(x^2-9) is a. 9 b. 18 c. 27 d. 1/3

The value of (lim)_(xvec3)((x^3+27)(log)_e(x-2))/(x^2-9) is a. 9 b. 18 c. 27 d. 1/3

lim_(x to 3) (x^(2) - 27)/(x^(2) - 9) is equal to

lim_(x to 2)(log(x-1))/(x-2) is equal to

The value of lim_(xrarr3) ((x^(3)+27)log_(e)(x-2))/(x^(2)-9) is

The value of lim_(xrarr3) ((x^(3)+27)log_(e)(x-2))/(x^(2)-9) is

The value of lim_(xrarr3) ((x^(3)+27)log_(e)(x-2))/(x^(2)-9) is

The value of lim_(x rarr3)((x^(3)+27)log_(e)(x-2))/(x^(2)-9) is a.9b.18c27d.1/3

lim_(xto0) (ln(2+x^(2))-ln(2-x^(2)))/(x^(2)) is equal to