Home
Class 12
MATHS
Prove that int(pi//8)^(3pi//8)(tan^2x\ d...

Prove that `int_(pi//8)^(3pi//8)(tan^2x\ dx)/(tan^2x+cot^2x) = pi/8.`

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate int_(0)^((pi)/(2))(tan^(2)x)/(tan^(2)x+cot^(2)x)dx

int_(0)^(pi//2) (5 tan x - 3 cotx)/(tan x + cot x) dx=

tan(pi/8)+cot(pi/8)=

int_(-pi//2)^(pi//2) (5sin^3 x+8sinx+4 cos^2x) dx

int_(pi//4)^(pi//3)(tan x + cot x) dx =

int_0^(pi/8) tan^(2) (2x) dx =

Prove that cot((pi)/8) - tan((pi)/8) = 2

int_(0)^((pi)/(2))(a tan x+b cot x)/(tan x+cot x)dx=

int_(0)^(pi//2) x sin^(8) 2x dx=

int_(0)^(pi//8) tan^(2) 2x dx is equal to