Home
Class 12
MATHS
For x>0, let f(x)=int1^x loget/(1+t)dt f...

For `x>0`, let `f(x)=int_1^x log_et/(1+t)dt` find the function `f(x)+f(1/x)` and show that `f(e)+f(1/e)=1/2`

Promotional Banner

Similar Questions

Explore conceptually related problems

For x >0,l e tf(x)=int_1^x((log)_e t)/(1+t)dtdot Find the function f(x)+f(1/x) and show that f(e)+f(1/e)=1/2dot

For x>0, let f(x)=int_(1)^(x)(log_(e)t)/(1+t)dt find the function f(x)+f((1)/(x)) and show that f(e)+f((1)/(e))=(1)/(2)

For x>0, let f(x)=int_(1)^(x)(log_(t)t)/(1+t)dt. Find the function f(x)+f((1)/(x)) and show that f(e)+f((1)/(e))=(1)/(2)

For x >0,l e tf(x)=int_1^x(logt)/(1+t)dtdot Find the function f(x)+f(1/x) and find the value of f(e)+f(1/e)dot

For x >0,l e tf(x)=int_1^x(logt)/(1+t)dtdot Find the function f(x)+f(1/x) and find the value of f(e)+f(1/e)dot

For x >0,l e tf(x)=int_1^x(logt)/(1+t)dtdot Find the function f(x)+f(1/x) and find the value of f(e)+f(1/e)dot

For x >0,l e tf(x)=int_1^x(logt)/(1+t)dtdot Find the function f(x)+f(1/x) and find the value of f(e)+f(1/e)dot

For x>0, let f(x)=int_(1)^(x)(log t)/(1+t)dt. Find the function f(x)+f((1)/(x)) and find the value of f(e)+f((1)/(e))

f(x)=int_1^x lnt/(1+t) dt , f(e)+f(1/e)=

If f(x)=int_(1)^(x) (log t)/(1+t) dt"then" f(x)+f((1)/(x)) is equal to