Home
Class 12
MATHS
If the vectors vec a, vec b, vec c are n...

If the vectors `vec a, vec b, vec c` are non-coplanar and l,m,n are distinct real numbers, then [(`l vec a + m vec b + n vec c) (l vec b + m vec c + n vec a) (l vec c + m vec a + n vec b`)] = 0, implies (A) lm+mn+nl = 0 (B) l+m+n = 0 (C) `l^2 + m^2 + n^2 = 0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If vec a × vec b = vec b × vec c != 0 , Prove that vec a + vec c = m vec b , m is a scalar.

If vec a , vec b , vec c are three non-coplanar vectors, prove that [ vec a+ vec b+ vec c vec a+ vec b vec a+ vec c]=-[ vec a vec b vec c]

If vec a , vec b , vec ca n d vec d are distinct vectors such that vec axx vec c= vec bxx vec da n d vec axx vec b= vec cxx vec d , prove that ( vec a- vec d)dot (vec b- vec c)!=0,

If vec a , vec b , vec ca n d vec d are distinct vectors such that vec axx vec c= vec bxx vec da n d vec axx vec b= vec cxx vec d , prove that ( vec a- vec d). (vec b- vec c)!=0,

If vec a , vec b , vec ca n d vec d are distinct vectors such that vec axx vec c= vec bxx vec da n d vec axx vec b= vec cxx vec d , prove that ( vec a- vec d). (vec b- vec c)!=0,

If vec a , vec b , vec ca n d vec d are distinct vectors such that vec axx vec c= vec bxx vec da n d vec axx vec b= vec cxx vec d , prove that ( vec a- vec d). (vec b- vec c)!=0,

vec a + 2vec b + 3vec c = vec 0 and vec a xxvec b + vec b xxvec c + vec c xxvec a = l (vec b xxvec c) then l =

If vectors vec a , vec b ,a n d vec c are coplanar, show that | vec a vec b vec c vec adot vec a vec adot vec b vec adot vec c vec bdot vec a vec bdot vec b vec bdot vec c|=0

If vec a , vec b ,a n d vec c are three non-coplanar non-zero vecrtors, then prove that ( vec a . vec a) vec bxx vec c+( vec a . vec b) vec cxx vec a+( vec a . vec c) vec axx vec b=[ vec b vec c vec a] vec a

If vec a , vec b ,a n d vec c are three non-coplanar non-zero vecrtors, then prove that ( vec a . vec a) vec bxx vec c+( vec a . vec b) vec cxx vec a+( vec a . vec c) vec axx vec b=[ vec b vec c vec a] vec a