Home
Class 11
MATHS
Let a1=1, an=n(a(n-1)+1 for n=2,3,... wh...

Let `a_1=1`, `a_n=n(a_(n-1)+1` for `n=2,3,...` where `P_n=(1+1/a_1)(1+1/a_2)(1+1/a_3)....(1+1/a_n)` then `Lt_(nrarroo)P_n=`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let a_1=1 , a_n=n(a_(n-1)+1) for n=2,3,... where P_n=(1+1/a_1)(1+1/a_2)(1+1/a_3)....(1+1/a_n) then lim_(nrarroo)P_n=

Let a_1, a_2, a_3, ...a_(n) be an AP. then: 1 / (a_1 a_n) + 1 / (a_2 a_(n-1)) + 1 /(a_3a_(n-2))+......+ 1 /(a_(n) a_1) =

If a_1,a_2 ...a_n are nth roots of unity then 1/(1-a_1) +1/(1-a_2)+1/(1-a_3)..+1/(1-a_n) is equal to

If a_1,a_2,a_3,……a_n are in A.P. [1/(a_1a_n)+1/(a_2a_(n-1))+1/(a_3a_(n-2))+..+1/(a_na_1)]

If 1, a_1,a_2,a_3 ,…, a_(n-1) are the nth roots of unity then prove that : (1-a_1)(1-a_2)(1-a_3)...(1-a_(n-1)) =n.

If roots of an equation x^n-1=0 are 1,a_1,a_2,........,a_(n-1) then the value of (1-a_1)(1-a_2)(1-a_3)........(1-a_(n-1)) will be (a) n (b) n^2 (c) n^n (d) 0

If a_1, a_2, a_3,.....a_n are in H.P. and a_1 a_2+a_2 a_3+a_3 a_4+.......a_(n-1) a_n=ka_1 a_n , then k is equal to

If a_1, a_2, a_3,.....a_n are in H.P. and a_1 a_2+a_2 a_3+a_3 a_4+.......a_(n-1) a_n=ka_1 a_n , then k is equal to