Home
Class 12
MATHS
int[f(a x+b)]^nf^(prime)(a x+b)dx...

`int[f(a x+b)]^nf^(prime)(a x+b)dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let inte^x{f(x)-f^(prime)(x)}dx=varphi(x)dot Then inte^xf(x)dx is

Let inte^x{f(x)-f^(prime)(x)}dx=varphi(x)dot Then inte^xf(x)dx is

Write a value of inte^(a x)\ {a\ f\ (x)+f^(prime)(x)}\ dx

If f(x)=cosx-int_0^x(x-t)f(t)dt ,t h e nf^(prime)(x)+f(x) is equal to a) -cosx (b) -sinx c) int_0^x(x-t)f(t)dt (d) 0

int \ {f(x)*g^(prime)(x)-f^(prime)(x)g(x))/(f(x)*g(x)){logg(x)-logf(x)} \ dx

int_(a)^(b)f(x)dx=int_(b)^(a)f(x)dx .

Prove that the equality int_(a)^(b) f(x) dx = int_(a)^(b) f(a + b - x) dx

int _(a) ^(b) f (x) dx = int _(a) ^(b) f (a + b - x) dx