Home
Class 12
MATHS
If f(x) is continuous for all real valu...

If `f(x)` is continuous for all real values of `x ,` then `sum_(r=1)^nint_0^1f(r-1+x)dx `is equal to (a)`int_0^nf(x)dx` (b) `int_0^1f(x)dx` (c)`int_0^1f(x)dx` (d) `(n-1)int_0^1f(x)dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) is continuous for all real values of x, then sum_(r=1)^(n)int_(0)^(1)f(r-1+x)dx is equal to (a)int_(0)^(n)f(x)dx(b)int_(0)^(1)f(x)dx(c)int_(0)^(1)f(x)dx(d)(n-1)int_(0)^(1)f(x)dx

If f(x) is continuous for all real values of x then sum_(r=1)^(n)int_(0)^(1)f(r-1+x)dx is equal to a) int_(0)^(n)f(x)dx b) int_(0)^(1)f(x)dx c) nint_(0)^(1)f(x)dx d) (n-1)int_(0)^(1)f(x)dx

int_0^(2a)f(x)dx is equal to a. 2int_0^af(x)dx b. 0 c. int_0^af(x)dx+int_0^af(2a-x)dx d. int_0^af(x)dx+int_0^(2a)f(2a-x)dx

int_0^(2a)f(x)dx is equal to 2int_0^af(x)dx b. 0 c. int_0^af(x)dx+int_0^af(2a-x)dx d. int_0^af(x)dx+int_0^(2a)f(2a-x)dx

int_0^af(a-x)dx =..... a) int_0^(2a)f(x)dx b) int_-a^af(x)dx c) int_0^af(x)dx d) int_a^0f(x)dx

If int_(0)^(10)f(x)dx=5 , then sum_(K=1)^(10) int_(0)^(1) f(K-1+x)dx is equal to

int_0^a[f(x)+f(-x)]dx= (A) 0 (B) 2int_0^a f(x)dx (C) int_-a^a f(x)dx (D) none of these

int_0^a[f(x)+f(-x)]dx= (A) 0 (B) 2int_0^a f(x)dx (C) int_-a^a f(x)dx (D) none of these

Q. if int_0^100(f(x) dx = a , then sum_(r=1)^100(int_0^1( f(r-1+x)dx)) =