Home
Class 10
MATHS
If tanA=ntanBa n dsinA=msinB , Prove tha...

If `tanA=ntanBa n dsinA=msinB ,` Prove that `cos^2A=(m^2-1)/(n^2-1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If tan A =ntanB , sinA =msinB , prove that , cos^2A=(m^2-1)/(n^2-1) .

If tanA=ntanB and sinA=msinB, prove that cos^2A=[m^2-1]/[n^2-1]

If tan A=n tan B and sin A=m sin B, prove that cos^(2)A=(m^(2)-1)/(n^(2)-1)

If tanA=ntanBandsinA=msinB then sec^(3)A((m^(2)-1)/(n^(2)-1))^((3)/(2) =?

If tan A = n tan B and sin A = m sin B, prove that : cos^(2) A = (m^(2) - 1)/(n^(2) - 1)

If tan alpha= n tan beta and sin alpha= m sin beta , prove that cos^2 alpha= (m^2-1)/(n^2-1) .

If "tan" alpha= n tan beta and sin alpha =m sin beta prove that : cos^(2)alpha=(m^(2)-1)/(n^(2)-1)

If tantheta=ntanalpha and sintheta=msinalpha then prove that cos^(2)theta=(m^(2)-1)/(n^(2)-1),n!=+-1.

If 3tanA tanB=1 , then prove that 2cos(A+B)=cos(A-B)

Prove that : cotA-tanA=(2cos^2A-1)/(sinAcosA)