Home
Class 10
MATHS
If a, b, c, d are in H.P. then prove tha...

If a, b, c, d are in H.P. then prove that `a+d>b+c`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a, b, c, d are in G.P., then prove that: (b-c)^(2)+(c-a)^(2)+(d-b)^(2)=(a-d)^(2)

If a ,b ,ca n dd are in H.P., then prove that (b+c+d)//a ,(c+d+a)//b ,(d+a+b)//c and (a+b+c)//d , are in A.P.

If a ,b ,ca n dd are in H.P., then prove that (b+c+d)//a ,(c+d+a)//b ,(d+a+b)//c and (a+b+c)//d , are in A.P.

If a ,b ,ca n dd are in H.P., then prove that (b+c+d)//a ,(c+d+a)//b ,(d+a+b)//c and (a+b+c)//d , are in A.P.

If a ,b ,ca n dd are in H.P., then prove that (b+c+d)//a ,(c+d+a)//b ,(d+a+b)//c and (a+b+c)//d , are in A.P.

If a,b,c,d are in G.P., then prove that: (b-c)^2 + (c-a)^2+(d-b)^2=(a-d)^2

If a,b,c and d are in H.P.,then prove that (b+c+d)/a,(c+d+a)/b,(d+a+b)/c and (a+b+c)/d, are in A.P.

If a ,b,c , d are in G.P. prove that (b + c)(b + d) = (c + a)(c+d)

If a,b,c are in H.P then prove that a/(b+c-a),b/(c+a-b),c/(a+b-c) are in H.P

If a,b,c are in H.P.,then prove that (a)/(b+c-a),(b)/(a+b-c),(c)/(a+b-c) are in H.P.