Home
Class 11
MATHS
If 6/5 a^A-3^B=9^C where A=loga x.log(10...

If `6/5 a^A-3^B=9^C` where `A=log_a x.log_(10) alog_a 5,B=log_(10) (x/10)` and `C=log_(100) x+log_4 2`. Find x

Promotional Banner

Similar Questions

Explore conceptually related problems

Value of x, satisfying (6)/(5)a^(log_(a)(x))*(log_(10)(a)*log_(a)(5))-3^(log_(10)((x)/(10)))=9^(log_(100)(x)+log_(4)(2)) is :

If log_(10)5+log_(10)(5x+1)=log_(10)(x+5)+1, then x is equal to

log_(10)^(x)-log_(10)sqrt(x)=2log_(x)10. Find x

(6)/(5)a^((log_(a)x)(log_(10)a)(log_(a)5))-3^(log_(10)((x)/(10)))=9^(log_(100)x+log_(4)2) (where a gt 0, a ne 1) , then log_(3)x=alpha +beta, alpha is integer, beta in [0, 1) , then alpha=

If log_(10)2 = x and log_(10)3 = y , then find log_(10)21.6.

x^((log_(10)x+5)/(3))=10^(5+log_(10)x)

(6)/(5)a^((log_(a)x)(log_(10)a)(log_(a)5))-3^(log_(10)((x)/(10)))=9^(log_(100)x+log_(4)2)("where "a gt 0, a ne 1) , then log_(3)x=alpha +beta, alpha is integer, beta in [0, 1) , then alpha=

(6)/(5)a^((log_(a)x)(log_(10)a)(log_(a)5))-3^(log_(10)((x)/(10)))=9^(log_(100)x+log_(4)2)("where "a gt 0, a ne 1) , then log_(3)x=alpha +beta, alpha is integer, beta in [0, 1) , then alpha=