Home
Class 11
MATHS
In a triangle ABC, sin^4A+sin^4B+ sin^4C...

In a `triangle ABC,` `sin^4A+sin^4B+ sin^4C=3/2+2cosAcosBcosC+1/2cos2Acos2Bcos2C`

Promotional Banner

Similar Questions

Explore conceptually related problems

In a triangle ABC , Prove that sin^4A+sin^4B+ sin^4C=3/2+2cosAcosBcosC+1/2cos2Acos2Bcos2C

In a /_ABC,sin^(4)A+sin^(4)B+sin^(4)C=(3)/(2)+2cos A cos B cos C+(1)/(2)cos2A cos2B cos2C

In triangle ABC if sin^2B+sin^2C=sin^2A then

(i) If in a triangle ABC, a^(4) + b^(4) +c^(4) - 2b^(2) c^(2) -2c^(2)a^(2)=0 , then show that, C=45^(@) or 135^(@) . (ii) In in a triangle ABC, sin^(4)A + sin^(4)B + sin^(4)C = sin^(2)B sin^(2)C + 2sin^(2) C sin^(2)A + 2sin^(2)A sin^(2)B , show that, one of the angles of the triangle is 30^(@) or 150^(@)

Prove that in a triangle ABC , sin^(2)A - sin^(2)B + sin^(2)C = 2sin A *cos B *sin C .

In a triangle ABC if (sin2A+sin2B+sin2C)/(cos A+cos B+cos C-1)=((lambda)/(2))cos((A)/(2))cos((B)/(2))cos((C)/(2)) then lambda equals

If A+B+C=pi/2 prove the following (i) sin 2A+sin 2B +sin 2C=4 cos A cos B cos C (ii) cos 2A +cos 2B+cos 2C=1+4 sin A sin B sin C.

If A, B, C are the angles of a triangle then sin^(2)A+sin^(2)B+sin^(2)C-2cosAcosBcosC is equal to

If A, B, C are the angles of a triangle then sin^(2)A+sin^(2)B+sin^(2)C-2cosAcosBcosC is equal to