Home
Class 11
MATHS
if cot^(-1)[sqrt(cosalpha)]-tan^(-1)[sqr...

if `cot^(-1)[sqrt(cosalpha)]-tan^(-1)[sqrt(cosalpha)]=x` then `sinx` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

cot^(-1)(sqrt(cosalpha))-tan^(-1)(sqrt(cosalpha))=x , then sin x =

If cot^(-1)(sqrt(cosalpha))-tan^(-1)(sqrt(cosalpha))=x , then sinx is (a) tan^2(alpha/2) (b) cot^2(alpha/2) (c) tan^2alpha (d) cotalpha/2

If cot^(-1)(sqrt(cosalpha))-tan^(-1)(sqrt(cosalpha))=x , then sinx is tan^2alpha/2 (b) cot^2alpha/2 (c) tan^2alpha (d) cotalpha/2

If cot^(-1)(sqrt(cosalpha))-tan^(-1)(sqrt(cosalpha))=x , then sinx is tan^2alpha/2 (b) cot^2alpha/2 (c) tan^2alpha (d) cotalpha/2

If cot^(-1)(sqrt(cosalpha))-tan^(-1)(sqrt(cosalpha))=x , then sinx is tan^2alpha/2 (b) cot^2alpha/2 (c) tan^2alpha (d) cotalpha/2

cot^(-1)((alpha)/(2))-tan^(-1)(sqrt(cosalpha))=x , then sin x is equal to

cot^(-1)(sqrtcosalpha)-tan^(-1)(sqrt(cosalpha)) =x, x, ge 0 , then sin x equals

Cot^(-1)(sqrt(Cos alpha))-Tan^(-1)( sqrt(Cos alpha))=x then Sinx=

cot^-1[(cosalpha)^(1/2)]-tan^-1[(cosalpha)^(1/2)]=x \; then , sin x=

If u=cot^(-1)sqrtcos alpha-tan^(-1)sqrt(cosalpha) then prove that sincup=tan^2(alpha/2) .