Home
Class 11
MATHS
If (ax)/(cos theta) + (by)/sin theta = a...

If `(ax)/(cos theta) + (by)/sin theta = a^2 - b^2, ``(ax sin theta)/ (cos^2 theta) - (by cos theta)/(sin^2 theta) = 0`, `then (ax)^(2/3) + (by)^(2/3)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If (ax)/(cos theta)+(by)/(sin theta)=a^(2)-b^(2), (ax sin theta)/(cos^(2) theta)-(b y cos theta)/(sin^(2) theta)= 0 show that (ax)^(2//3) +(by)^(2//3) =(a^(2)-b^(2))^(2//3)

If (ax)/(cos theta)+(by)/(sin theta)=a^(2)-b^(2)(ax sin theta)/(cos^(2)theta)-(by cos theta)/(sin^(2)theta)=0then(ax)^((2)/(3))+(by)^((2)/(3))=

2(cos theta+cos2 theta)+(1+2cos theta)sin2 theta=2sin theta

cos theta+sin theta=cos2 theta+sin2 theta

( sin theta - 2 sin ^ 3 theta ) / (2 cos ^ 3 theta - cos theta ) = tan theta

(cos theta + sin theta) ^ (2) + (cos theta-sin theta) ^ (2) =

(sin3 theta+cos3 theta)/(cos theta-sin theta)=1+2xx sin2 theta

(sin theta-2sin^(3)theta)/(2cos^(3)theta-cos theta)=tan theta

Prove that (sin theta - 2 sin^(3) theta)/(2 cos^(3) theta - cos theta) = tan theta

(cos theta + sin theta )^(2) + (cos theta - sin theta )^(2) =