Home
Class 10
MATHS
Prove that (cosA-sinA+1)/(cosA+sinA-1) ...

Prove that `(cosA-sinA+1)/(cosA+sinA-1) =cosec A+ cot A` using the identity `cosec^(2)A=1+cot^(2)A`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that (cosA-sinA+1)/(cosA+sinA-1) = cosecA+cotA

Prove the following identities. where the angles involved are acute angles for which the expressions are defined. (cosA-sinA+1)/(cosA+sinA-1)=cosecA+cotA , using the identity cosec^(2)A=1+cot^(2)A .

Prove the following identities, where the angles involved are acute angles for which the expressions are defined. : (cosA-sinA+1)/(cosA+sinA-1)=cosecA+cotA, using the identity coses^2A=1+cot^2A)

Prove that cot(A/2)=sinA/(1-cosA)

Prove the following identities,where the angles involves are acute angles for which the expressions are defined:(v) (CosA-SinA+1)/(CosA+SinA-1)=CosecA+CotA using the identity cosec^2 A=1+cot^2 A

Prove that : (cosec A-sin A ) (sec A-cos A)=sinA cosA

Prove that (1+cosA)/(sinA)+(sinA)/(1+cosA)=2cosecA

Prove that : (cosA)/(1+sinA)+(1+sinA)/(cosA)=2secA.

Prove that : (cosA)/(1+sin A) +(1+sinA)/(cosA)=2 sec A