Home
Class 11
MATHS
In a A B C , if cosC=(sinA)/(2sinB) , p...

In a ` A B C` , if `cosC=(sinA)/(2sinB)` , prove that the triangle is isosceles.

Promotional Banner

Similar Questions

Explore conceptually related problems

If cosB = (sinA)/(2sinC) prove that the triangle is isosceles.

In a triangle A B C , if cos A=(sinB)/(2sinC) , show that the triangle is isosceles.

In DeltaABC , cosC=(sinA)/(2sinB) , prove that b=c.

In triangle ABC , if cosA+sinA-(2)/(cosB+sinB)=0 then prove that triangle is isosceles right angled.

In triangle ABC , if cosA+sinA-(2)/(cosB+sinB)=0 then prove that triangle is isosceles right angled.

In triangle ABC , if cosA+sinA-(2)/(cosB+sinB)=0 then prove that triangle is isosceles right angled.

In any triangle ABC, if (cosB+ 2 cosA)/(cos B + 2cosC ) = (sin C)/(sinA) then prove that, the triangle is either isosceles or right angled.

If (cosA + 2cosC) : (cosA + 2cosB) = sinB : sinC prove that the triangle either isosceles or right angled.

If cosC=(sinB)/(2sinA) ,show that /_\ABC is isoscles.

In a triangleABC , if |(1,1,1),(1+sinA,1+sinB,1+sinC),(sinA+sin^2A,sinB+sin^2B,sinC+sin^2C)|=0 , then prove that triangleABC is an isosceles triangle.