Home
Class 11
MATHS
Evaluate the limits, if exist lim(x rarr...

Evaluate the limits, if exist `lim_(x rarr 0)(log_e(1+2x))/(x)`.

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \( \lim_{x \to 0} \frac{\log_e(1 + 2x)}{x} \), we will follow these steps: ### Step 1: Identify the Form First, we substitute \( x = 0 \) into the expression: \[ \frac{\log_e(1 + 2 \cdot 0)}{0} = \frac{\log_e(1)}{0} = \frac{0}{0} \] This is an indeterminate form (0/0), so we can apply L'Hôpital's Rule or use the Taylor series expansion. ### Step 2: Use the Taylor Series Expansion The Taylor series expansion for \( \log_e(1 + x) \) around \( x = 0 \) is: \[ \log_e(1 + x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \ldots \] For our case, we substitute \( x \) with \( 2x \): \[ \log_e(1 + 2x) = 2x - \frac{(2x)^2}{2} + \frac{(2x)^3}{3} - \ldots \] This simplifies to: \[ \log_e(1 + 2x) = 2x - 2x^2 + \frac{8x^3}{3} - \ldots \] ### Step 3: Substitute into the Limit Now we substitute this expansion back into our limit: \[ \lim_{x \to 0} \frac{\log_e(1 + 2x)}{x} = \lim_{x \to 0} \frac{2x - 2x^2 + \frac{8x^3}{3} - \ldots}{x} \] This simplifies to: \[ \lim_{x \to 0} \left( 2 - 2x + \frac{8x^2}{3} - \ldots \right) \] ### Step 4: Evaluate the Limit As \( x \to 0 \), all terms containing \( x \) vanish: \[ \lim_{x \to 0} (2 - 2x + \frac{8x^2}{3} - \ldots) = 2 \] ### Conclusion Thus, we find that: \[ \lim_{x \to 0} \frac{\log_e(1 + 2x)}{x} = 2 \]

To evaluate the limit \( \lim_{x \to 0} \frac{\log_e(1 + 2x)}{x} \), we will follow these steps: ### Step 1: Identify the Form First, we substitute \( x = 0 \) into the expression: \[ \frac{\log_e(1 + 2 \cdot 0)}{0} = \frac{\log_e(1)}{0} = \frac{0}{0} \] This is an indeterminate form (0/0), so we can apply L'Hôpital's Rule or use the Taylor series expansion. ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    NCERT|Exercise EXERCISE 13.2|11 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    NCERT|Exercise EXERCISE 12.1|4 Videos
  • LINEAR INEQUALITIES

    NCERT|Exercise EXERCISE 6.2|10 Videos

Similar Questions

Explore conceptually related problems

lim_(x rarr0)(log_(e)(1+x))/(x)

Evaluate the limits,if exist lim_(x rarr0)(e^(2+x)-e^(2))/(x)

Evaluate the limits,if exist lim_(x rarr0)(e^(4x)-1)/(x)

lim_(x rarr0)(sin log(1-x))/(x)

Evaluate the limits,if exist quad lim_(x rarr0)(e^(sin x)-1)/(x)

Evaluate the limits,if exist (lim)_(x rarr0)(log(1+x^(3)))/(sin^(3)x)

lim_(x rarr0)(log(1+x))/(x)=1

Evaluate the limits,if exist lim_(x rarr0)(x(e^(x)-1)/(1-cos x))

"lim_(x rarr0)(log_(e)(1+(x)/(2)))/(x)

lim_(x rarr0)(log(1-(x)/(2)))/(x)