Home
Class 11
MATHS
Evaluate the limits, if exist lim(x rarr...

Evaluate the limits, if exist `lim_(x rarr 0)(e^(sinx)-1)/x`.

Text Solution

Verified by Experts

The correct Answer is:
1

`lim_(x rarr 0)(e^(sinx)-1)/x`
`=lim_(x rarr 0)(e^(sinx) cosx)/1`
`=(e^(sin0) xx cos0)`
`=e^0`
`=1`
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    NCERT|Exercise EXERCISE 13.2|11 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    NCERT|Exercise EXERCISE 12.1|4 Videos
  • LINEAR INEQUALITIES

    NCERT|Exercise EXERCISE 6.2|10 Videos

Similar Questions

Explore conceptually related problems

lim_(x rarr0)(e^(sin x)-1)/(x)

lim_(x rarr0)(e^(sin x)-1)/(x)

Evaluate the limits,if exist lim_(x rarr0)(e^(4x)-1)/(x)

Evaluate the limits,if exist lim_(x rarr0)(x(e^(x)-1)/(1-cos x))

Evaluate the limits,if exist lim_(x rarr0)(e^(2+x)-e^(2))/(x)

Evaluate the limits,if exist lim_(x rarr0)(log_(e)(1+2x))/(x)

lim_(x rarr0)((e^(x)-x-1)/(x))

Evaluate the limit,if exists : lim_(x rarr0)((a+x)^(2)sin(a+x)-a^(2)sin a)/(x)

Evaluate the limits,if exist (lim)_(x rarr0)(log(1+x^(3)))/(sin^(3)x)

Evaluate the following limits : lim_(x to 0)(e^(sinx)-1)/x