Home
Class 11
MATHS
Evaluate the limits, if exist lim(x rarr...

Evaluate the limits, if exist `lim_(x rarr 0)(e^(2+x)-e^2)/x`.

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \( \lim_{x \to 0} \frac{e^{2+x} - e^2}{x} \), we can follow these steps: ### Step 1: Rewrite the expression We start with the limit expression: \[ \lim_{x \to 0} \frac{e^{2+x} - e^2}{x} \] We can factor out \( e^2 \) from the numerator: \[ = \lim_{x \to 0} \frac{e^2(e^x - 1)}{x} \] ### Step 2: Simplify the limit Now, we can rewrite the limit as: \[ = e^2 \lim_{x \to 0} \frac{e^x - 1}{x} \] ### Step 3: Evaluate the limit The limit \( \lim_{x \to 0} \frac{e^x - 1}{x} \) is a standard limit that equals 1. Therefore, we have: \[ = e^2 \cdot 1 = e^2 \] ### Conclusion Thus, the limit is: \[ \lim_{x \to 0} \frac{e^{2+x} - e^2}{x} = e^2 \] ---

To evaluate the limit \( \lim_{x \to 0} \frac{e^{2+x} - e^2}{x} \), we can follow these steps: ### Step 1: Rewrite the expression We start with the limit expression: \[ \lim_{x \to 0} \frac{e^{2+x} - e^2}{x} \] We can factor out \( e^2 \) from the numerator: ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    NCERT|Exercise EXERCISE 13.2|11 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    NCERT|Exercise EXERCISE 12.1|4 Videos
  • LINEAR INEQUALITIES

    NCERT|Exercise EXERCISE 6.2|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate the limits,if exist lim_(x rarr0)(e^(4x)-1)/(x)

Evaluate the limits,if exist lim_(x rarr5)(e^(x)-e^(5))/(x-5)

Evaluate the limits,if exist lim_(x rarr3)(e^(x)-e^(3))/(x-3)

Evaluate the limits,if exist lim_(x rarr0)(log_(e)(1+2x))/(x)

Evaluate the limits,if exist lim_(x rarr0)(x(e^(x)-1)/(1-cos x))

Evaluate the limits,if exist quad lim_(x rarr0)(e^(sin x)-1)/(x)

lim_(x rarr0)(e^(2x)+e^(x)-2)/(x)

lim_(x rarr0)((e^(3x)-e^(2x))/(x))

lim_(x rarr0)(e^(sin x)-1)/(x)

lim_(x rarr0)(e^(sin x)-1)/(x)