Home
Class 12
MATHS
Let f(x)=int1^xsqrt(2-t^2)dtdot Then th...

Let `f(x)=int_1^xsqrt(2-t^2)dtdot` Then the real roots of the equation , `x^2-f^(prime)(x)=0` are: a.`+-1` b. `+-1/(sqrt(2))` c.`+-1/2` d. `0&1`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=int_1^xsqrt(2-t^2)dt Then the real roots of the equation x^2-f^(prime)(x)=0 are

Let f(x)=int_1^xsqrt(2-t^2)dtdot Then the real roots of the equation , x^2-f^(prime)(x)=0 are: +-1 b. +-1/(sqrt(2)) c. +-1/2 d. 0&1

Let f(x)=int_1^xsqrt(2-t^2)dtdot Then the real roots of the equation x^2-f^(prime)(x)=0 are (a) +-1 (b) +-1/(sqrt(2)) (c) +-1/2 (d) 0 and 1

Let f(x)=int_1^xsqrt(2-t^2)dtdot Then the real roots of the equation x^2-f^(prime)(x)=0 are (a) +-1 (b) +-1/(sqrt(2)) (c) +-1/2 (d) 0 and 1

Let f(x)=int_1^xsqrt(2-t^2)dtdot Then the real roots of the equation x^2-f^(prime)(x)=0 are (a) +-1 (b) +-1/(sqrt(2)) (c) +-1/2 (d) 0 and 1

Let f(x)=\ int_1^xsqrt(2-t^2)dtdot Then the real roots of the equatin x^2-f^(prime)(x)=0 are +-1 b. +-1/(sqrt(2)) c. +-1/2 d. 0 and 1

Let f(x) = int_1^x sqrt(2 - t^2) dt . Then the real roots of the equation x^2 - f(x) = 0 are:

Let f(x)=int_1^xsqrt(2-t^2)dtdot Then the real roots of the equation x^2-f^(prime)(x)=0 are (a)+-1 (b) +-1/(sqrt(2)) (c)+-1/2 (d) 0 and 1